Photoreceivers are based on the same types of semiconductor photodiodes used for power sensors (see
Photodiode Sensor Physics) and camera-based beam profiling (see
Laser Beam Profile Measurement). Since these applications are mainly focused on steady-state (quasi-CW) optical response or, for a pulsed source, the time-integrated response, the actual temporal response of the optical signal is not critical. However, many applications require the monitoring of rapid events and therefore, high-speed optical detection is necessary. The characteristics of such
high-speed photoreceivers as well as their associated applications are the subjects of this section. Photoreceivers focused on sensitive detection of optical signals at low-light levels or those that exhibit small differential changes are also addressed.
Since photoreceivers are semiconductor photodiodes, they possess the same intrinsic advantages described in Photodiode Sensor Physics e.g., large detectivities and very wide dynamic ranges. They also share many common parameters that must be considered when selecting a detector for any application. These include responsivity, spectral sensitivity, linearity, power handling, bias voltage, and power consumption. However, due to the nature of the specific applications for photoreceivers, there are unique characteristics as well. The attributes discussed in this section include rise time and bandwidth, methods for noise level reduction, as well as detector gain and active area.
The conversion of photons to electrons is very rapid in photodiodes, which enables them to follow fast changing radiation levels. To understand this response time, it is instructive to revisit the operation of a reversed bias p-n junction (shown in Figure 1) that makes up a photodiode. Electron-hole pairs that are generated in the depletion region experience a strong electric field that causes them to rapidly drift in opposite directions. Charge carriers generated near the depletion layer can end up there following random diffusion and contribute to the external electric current. Carriers generated farther away from the depletion layer are highly likely to recombine and therefore not contribute to the current. The overall response time for current generation depends on the transit time it takes for carriers to drift across the depletion layer as well as the time for carriers to diffuse into this region. Diffusion is a relatively slow process compared to drift and so modifications to the p-n junction are often implemented to reduce diffusion (see
Types of Photoreceivers).