摘要
隨著當今EUV機台設備和電子束技術的蓬勃發展,實現奈米級的定位精度變得愈發重要,
例如晶圓、光罩、光束、光學元件及鏡片的定位。
特別是快速和長距離移動,只有在使用相對應的量測系統與運動控制器間進行閉迴路回授訊號控制時才能達到此精度。
這些量測系統必須滿足包括超高真空(UHV)和無塵室相容性、高溫暴露,以及隨著晶圓尺寸的增大,對大範圍移動精度的需求。
Attocube 專為奈米級精度應用開發並獲得基於 Fabry-Pérot 干涉原理的位移干涉儀型號IDS3010專利。
IDS3010可達到皮米解析度和奈米準確度進行回授運動控制和位移檢測,並且具備25Mhz頻寬擷取率。
IDS3010設備提供三個訊號通道,用於測量多軸平臺的位移和角度變化。
圖1 : Attocube公司生產的IDS3010干涉儀
系統架構
測量機台設備如圖2所示,包括一個沿Y軸移動一公尺的電磁XY平台。
在移動平台上放置了兩個1530nm波段的反射鏡,作為測量表面。
為了準確控制平台位置,我們裝設了三個固定準直訊號感測探頭 ( CH1、CH2及CH3,型號 : M12/C1.6 )。
兩個感測探頭(CH1和CH2)測量YZ平面反射鏡的位移,第三個感測探頭(CH3)量測Y軸。
CH1的SinCos信號可用於X軸的回授閉迴路控制。
CH1和CH2水平距離40 mm,因此可以計算出YZ平面產生的YAW偏擺誤差即時補償。
測量反射鏡時,M12/C1.6感測探頭在1公尺距離內的角度容許誤差為±30 m°。
這種誤差在對齊精確的XY平台設置時仍然是在容許範圍內,並且保證了低餘弦誤差。
這是相較其他干涉儀製造商有額外再系統架設上的優勢。
IDS3010提供即時位置回授及反饋的數據(SinCos, AquadB, HSSL, 線性模擬輸出和BissC)。
在我們的實驗中,我們使用了具有5 MHz頻寬和奈米級解析度的SinCos數據輸出連接到運動平台的控制器。
並且使用環境補償單元(ECU)來確保測量的準確性。
在真空條件下,環境補償是不需要的,這是半導體應用的標準,從而實現更高的精度。
圖2 : 12吋晶圓裝設在移動平台上,平台邊上裝設有1530nm波段反射鏡片,並且將三顆感測探頭裝設在機台上。
測量結果
如圖3a所示,首先進行了一個30 x 30 mm的方形移動,然後Y軸移動總行程達到1公尺。
值得注意的是,再1公尺的距離量測距離,CH3對CH1和CH2有大約300 mm的偏移距離。
圖3b顯示了平台移動的相對YAW偏擺(Z軸旋轉)。
圖表顯示,Y軸移動達到1公尺時,YAW偏擺旋轉增加到約30 m°。
圖3c顯示了在µ°範圍內的重複角度偏差,這主要是由沿運動軸分佈的磁極距離引起的。
如果電磁平台有額外的精確旋轉設備,則可以補償YAW偏擺旋轉。
圖3
結論
IDS3010證明是一個適用於閉迴路訊號回授反饋XY平台應用的工具。位移和角度都可以在高達25 MHz的頻寬訊號。
輕便小型化(7公克)的感測探頭允許靈活的裝配架設,並且確保對要求苛刻的奈米級定位的可用性和準確性。
以太網連接和多種標準編程語言(如C+、C#、DLLs、Python和LabVIEW)允許輕鬆地整合到各種不同系統中。